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Abstract Sea-surface temperature and salinity (SST/S) in the Arctic Ocean (AO) are largely governed by
sea-ice and continental runoff rather than evaporation and precipitation as in lower latitude oceans, and
global satellite analyses and models which incorporate remotely observed SST/S may be inaccurate in the
AO due to lack of direct measurements for calibrating satellite data. For this reason, we are motivated to val-
idate several satellite sea-surface temperature (SST) data products and SST/S models by comparing gridded
data in the AO with oceanographic records from 2006 to 2013. Statistical analysis of product-minus-
observation differences reveals that the satellite SST products considered have a temperature bias magni-
tude of less than 0.5�C compared to ship-based CTD measurements, and most of these biases are negative
in sign. SST/S models also show an overall negative temperature bias, but no common sign or magnitude of
salinity bias against CTD data. Ice tethered profiler (ITP) near-surface data span the seasons of several years,
and these measurements reflect a sea-ice dominated region where the ocean surface cannot be remotely
observed. Against this data, many of the considered models and products show large errors with detectable
seasonal differences in SST bias. Possible sources of these errors are discussed, and two adjustments of
product SST on the basis of sea-ice concentration are suggested for reducing bias to within less than 0.01�C
of ITP near-surface temperatures.

1. Introduction

Sea-surface temperature and salinity (SST and SSS, respectively, or SST/S collectively) are designated by the
World Meteorological Organization as ‘‘essential climate variables’’ [GCOS, 2011]. At the interface of the
ocean and atmosphere, they play a role in coupling highly dynamical components of the global climate sys-
tem and are diagnostic of the present ocean state. Tropical and midlatitude SST/S are driven largely by pre-
cipitation and evaporation, poleward heat transfer via ocean currents, and large basin-scale processes. In
contrast, the SST/S of Arctic Ocean (AO) are strongly influenced by sea-ice and related melt waters, brine
rejection, continental runoff onto broad continental shelves, and the upward flux of heat from the deeper
warm ocean.

The AO is also marked by a cold, fresh surface layer in contrast to the monotonic decrease of temperature
with depth common to most world oceans [Comiso, 2010]. Surface salinity therefore plays a significant role
in the dynamics of the near-surface waters; density of cold water is more sensitive to salinity than tempera-
ture. While the AO is small compared to other oceans, a comprehensive understanding of its dynamics is
inhibited by the cost and difficulty of directly measuring this extreme environment. At present, observations
are dominated by remotely sensed surface data [cf. Emery et al., 2001; Kawai and Wada, 2007; Donlon et al.,
2012]. Satellite-derived observations provide much greater spatial coverage than sparse in situ methods,
albeit at lower resolution.

The spectral data which compose satellite SST/S observations are restricted to the very upper-most ocean
layers. Infra-red (IR) sensors measure ‘‘skin’’ SST at micrometer depths where thermal transfer cools the inter-
face. Below the skin layer lies a meters-thick region where temperatures may exhibit fluctuations due to
daily insolation and atmospheric wind. Microwave (MW) sensors which penetrate to millimeter depths are
able to measure SST/S at the top of this sub-surface layer where direct solar influences are most pro-
nounced. The base temperature of this layer, independent of diurnal variability, defines foundational SST
and is sought as the best near-surface representative of temperature.
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The spatial resolution of IR sensors is on the order of 1 km, while that of MW sensors is an order larger. Satel-
lite data products may incorporate observations from several sensors with different resolutions and pene-
tration depths to produce accurate representations of SST. Remotely sensed emissions spectra must
therefore be adjusted to foundational SST/S by accounting for cool-skin effects, diurnal insolation, wind,
precipitation, and sensor inaccuracies [Fairall et al., 1996]. Such techniques for empirical calibration of satel-
lite measurements are not discussed here but may be found in Robinson [2004] and product documenta-
tions. Limited in situ data available for tuning and calibrating these algorithms may lead to SST/S inaccuracy
in the AO where the mechanisms influencing the vertical temperature structure differ from those in data-
abundant regions.

Validation and inter-comparison studies of gridded global satellite SST analyses use in situ data such as
Argo drifters [Martin et al., 2012] and other inventories of global in situ measurements [Dash et al., 2012]
with sparse AO coverage. Chen et al. [2002], Corlett et al. [2006], and Høyer et al. [2012] use in situ buoy data
for AO satellite SST calibration and validation, with the latter studies augmenting their comparison sets with
ship and radiometer records, respectively. Recent modeling studies by Gammelsrød et al. [2009] and Nguyen
et al. [2009, 2011] include in situ T/S for comparison of hydrographic transport and verification of calibrated
model parameters, respectively. Sakov et al. [2012] compare model T/S to in situ profiles to validate a data-
assimilated Arctic model and assess its sensitivity to sub-ice ITP data.

Concern for the uncertainties in transforming satellite-data into foundational SST/S estimates motivates this
study which validates selected global satellite SST products and SST/S models in the Arctic region. The rela-
tionship of gridded data dependent on satellite temperature measurements to external in situ SST/S meas-
urements is explored statistically in this paper. The investigation relies heavily on the contents of an online-
accessible International Polar Year 2007–2008 (IPY) measurement database (http://oregon.iarc.uaf.edu/
dbaccess.html) containing more than 12,000 ship-cast CTD profiles in the Arctic region spanning 2006–
2011. Section 2 summarizes the satellite analyses, model outputs, and in situ data used in this comparison.
Section 3 describes the comparison methodology, section 4 discusses results of the product-to-data corre-
spondences, and the final section summarizes results. Use of SST, SSS, and SST/S throughout the text refer
to foundational values unless otherwise noted.

2. Data

Two types of gridded SST/S are discussed here: SST analysis and SST/S model products. The former consist
of SST maps and other fields synthesized from algorithmic processing of satellite data and typically in situ
data when available. The latter products are generated by programs driven by primitive-equation models
which use observational data for parameter calibration or state adjustment (i.e., data assimilation). The
terms ‘‘analyses’’ and ‘‘models’’ hereafter succinctly refer to satellite-derived data sets and data-conditioned
model output, respectively, and ‘‘product’’ is used to describe data from either source. Several criteria aided
in the selection of the product data sets. The data needed to be freely available online, include gridded
daily coverage of the Arctic regions between 65�N and 82�N for the majority of years 2006–2009 or 2010–
2013.

2.1. Analysis Products
Briefly discussed in this section are the included satellite-derives SST products which meet the above-listed
requirements. Satellite SSS analyses for the AO meeting the desired criteria were not available at the time
of this study. Three included satellite products target at-depth SST: the NOAA 1/4� Optimal Interpolation
SST version 2 (OISSTv2) [Reynolds et al., 2007] available for 1981-present at http://www.ncdc.noaa.gov/oisst,
the NCEP Marine Modeling and Analysis Branch 1/12� high-resolution Real-Time Global SST (RTG_HR)
[Thi�ebaux et al., 2003; Gemmill et al., 2007] available for 2006-present at ftp://polar.ncep.noaa.gov/pub/his-
tory/sst/ophi/, and the Naval Oceanographic Office 1/10� SST analysis (K10_SST) available for 2008-present
at http://podaac.jpl.nasa.gov/dataset/NAVO-L4HR1m-GLOB-K10_SST. Included products which target foun-
dational SST are: the UK Met Office 1/20� Operational SST and Sea Ice Analysis (OSTIA) [Stark et al., 2007;
Donlon et al., 2012] available for April 2006-present at http://www.myocean.eu, the NASA Jet Propulsion
Laboratory 1/100� Multi-scale Ultra-high Resolution SST (MURSST) [http://mur.jpl.nasa.gov/multi_resolution
_analysis.php] available for 2002-present at http://podaac.jpl.nasa.gov/Multi-scale_Ultra-high_Resolution_
MUR-SST, the Australian Bureau of Meteorology 1/4� Global Australian Multi-Sensor SST Analysis (GAMSSA)
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[Zhong and Beggs, 2008] available for late 2008-present at ftp://podaac-ftp.jpl.nasa.gov/allData/ghrsst/data/
L4/GLOB/ABOM/GAMSSA_28km, and the Remote Sensing Systems 1/4� MW-IR SST version 4 (RSS_SST)
available for 2002-present at http://www.remss.com/measurements/sea-surface-temperature/.

All analyses are based on MW and IR satellite data except for RTG_HR, which incorporates no MW data, and
OISSTv2, which incorporated MW only until October 2011. Algorithms used by the analyses to combine sat-
ellite observations and other data into complete gridded fields generally are based either on optimal inter-
polation or related variational methods. In addition to satellite data, analyses often use in situ data from
ships and buoys in their optimization; however, K10_SST and RSS_SST analyses do not use in situ data, and
MURSST uses this data for quality control rather than in its variational optimization.

2.2. Model Products
The first SST/S model output to be compared comes from the NASA JPL Estimating the Circulation and Cli-
mate of the Ocean, Phase II project. The MITgcm-based model generates full-depth global ocean output
together with an interactive sea-ice component at 1/4� grid spacing, then assimilates satellite and in situ
observations via kernel and adjoint methods [Menemenlis et al., 2005]. The data set used in this work is the
geographically interpolated NASA/JPL Cube92 model output available at ftp://ecco2.jpl.nasa.gov/data1/
cube/cube92. The two-dimensional daily averaged SST and SSS fields from 2006 to 2012 of that data set are
herein referred to as ECCO2 data, and represent quantities averaged over the top 10 m.

The second model output is produced as part of the US Global Ocean Data Assimilation Experiment. This
production system data-optimizes the model state calculated by the Hybrid Coordinate Ocean Model
(HYCOM) using the Navy Coupled Ocean Data Assimilation [Cummings, 2005]. This three-dimensional varia-
tional system assimilates satellite and in situ observations including altimeter data, SST, and sea-ice. This
study specifically uses the 0 m vertical level of the three-dimensional temperature and salinity (T/S) from
HYCOM 1 NCODA Global analysis GLBa0.08 experiments 90.6–90.1 (https://hycom.org/dataserver/glb-analy-
sis). These fields correspond to SST and SSS from late 2008–present and are referred to herein as HYCOM
data for brevity.

2.3. In Situ Observations
The direct observational data used for validation include: a rich collection of hydrographical measurements
from the 2007–2008 IPY collaboration which extends from 2006 through 2012; hydrographical profiles from
Woods Hole Oceanographic Institute (WHOI) cruises to the Beaufort Sea during 2006–2013 and from inter-
national cruises to the Eurasian Arctic shelf during 2011–2013; and WHOI ice-tethered profilers (ITPs) adrift
starting in 2006 [Krishfield et al., 2008; Toole et al., 2011]. This data is organized into three groups: sets of
hydrographical profiles collected during 2006–2009 and 2010–2013, and one set of near-surface measure-
ments from ITPs during 2006–2013. The first groups consist of ship-based rosette CTD profiles collected
either in the years around the recent IPY or in the years after 2009, supplemented by a small number of
expendable CTD (xCTD) readings. For brevity, these groups are identified as ‘‘IPY CTD’’ and ‘‘post-IPY CTD’’
hereafter. The third group comprises T/S data obtained from shallow microCAT sensors attached to ITPs as
well as the upper-most profiler readings, and is referred to as ‘‘ITP.’’

The IPY CTD set includes the 2006–2009 ship-based CTD and xCTD profiles from the IPY database as well as
Beaufort Sea and Siberian Shelf rosette CTD and xCTD profiles from cruises conducted during 2006–2009.
Ship-based CTD observations from 2010 to 2013 contained in the IPY database are included in the post-IPY
CTD set. Much of the IPY and post-IPY CTD data were obtained in preprocessed form with profiles resolved
to less than 1 m depth using undocumented methods. Therefore, any data between 0 m and 3 m are
ignored as its origins are often uncertain. The ITP data set was obtained online in the form of roughly
30,000 time-averaged profiles from the WHOI website (http://www.whoi.edu/website/itp), and this data was
filtered to retain only data above 10 m depth.

All in situ measurements used contain T/S data; records lacking either were omitted. Profiles with values identi-
cally zero or unrealistic temperatures beyond the range 22.2–30�C or salinities beyond 0–40 PSU in the top
10 m are omitted. The inherent instrument errors associated with these data sets are small. CTD sensors typically
have accuracies on order 1023 �C (1022 �C for xCTD) for temperature and order 1023 PSU (1022 PSU for xCTD)
for salinity [Sy and Wright, 2000], with similar initial accuracies established for microCAT sensors. The IPY CTD,
post-IPY CTD, and ITP data sets consist of roughly 9800, 1230, and 14,000 near-surface profile representatives,
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respectively, at locations illustrated in Figure 1. Use of ‘‘CTD’’ hereafter refers exclusively to the ship CTD and
xCTD records collected in the IPY CTD and post-IPY CTD observation groups unless specified otherwise.

3. Methodology

Calculation of foundational SST/S from CTD and ITP profiles requires careful consideration. This study uses
the measurement average over the range of 3–7 m to represent foundational SST/S for each profile, similar
to Lee et al. [2010]. Exclusion of the upper 3 m is intended to avoid the most extreme variations in the diur-

nal temperature cycle and to avoid
measurements of questionable origin.
For non-ITP records where surface
salinity remains above 20 PSU, mean
density and temperature profiles show
little vertical change over the range
3–7 m (Figure 2). Use of this range for
averaging is analytically justified by
way of a constrained variance minimi-
zation as follows. Use R and T to
denote the mean density and tempera-
ture profiles, respectively, shown in
Figure 2 between depths 1 m and
10 m, and use �Rða; bÞ and �T ða; bÞ to
denote the averages of those profiles
over depths a–b m. Ranges which
minimize the total variance in R
and T may be sought by finding

argmin R2�Rða; bÞð Þ21 T2�T ða; bÞð Þ2
h i

constrained by values such that
a< 2 m and a < b < 10 m. Among the
several near-integer solutions with
roughly- equal minimum variances in R
and T, the range 3–7 m is the optimal
solution with the largest difference

Figure 1. Locations of in situ data poleward of 65�N. Observational data referred to, from left to right, as ‘‘IPY CTD,’’ ‘‘post-IPY CTD,’’ and ‘‘ITP,’’ respectively. Colors correspond to measure-
ment year. Plotted points indicate measurements between 3 m and 7 m depth.

Figure 2. Mean T/S and density profiles for all ship CTD data north of 65�N
excluding profiles with salinity less than 20 PSU in the uppermost 10 m. The
mean density profile is shown in heavy black as the difference from 1000 g kg– 1,
and thin grey lines at a distance of one standard deviation illustrate density vari-
ability. Mean T/S profiles are shown in dotted and broken lines, respectively, with
scales given on the top axis in bold and italics, respectively. The shaded rectangle
indicates the 3–7 m region where T/S and density are nearly constant, indicating
a region representative of sea-surface foundational values.
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between endpoints. However, the mean salinity profile has the lowest variance over the range of 1–5 m as
calculated by a similar process. ITP microCATs record T/S data with a minimum depth typically between 5 m
and 6 m, and ITP SST/S representatives are therefore calculated as an average of 1–3 values measured by
profiler data binned at 7 m and shallower microCAT data.

Gridded SST/S product data was linearly interpolated in space and time to obtain representative product
values collocated with each observation. Validation of data products requires comparison against independ-
ent data not used in their generation. The assembled IPY database contents were held privately for data
contributors and only recently made publicly available, and roughly one-half of the post-IPY CTD data was
obtained from closed sources. Most of the data therefore could not have been used for that purpose as it
was not available for real-time production. A small portion of older data included in this study may have
been used for quality control purposes by e.g., GHRSST in producing low-level background fields on which
several analyses are based.

The statistical correspondence between measurements and products quantifies how well the product rep-
resents the observed ocean. In situ observations are known with accuracy and certainty, so the quality of a
product or model can be roughly ascertained from the fit to the observations. Correlation, product-minus-
observation residual bias, and centered root mean squared difference (RMSD) between products and obser-
vations data are able to assess how well a product tracks the background state and captures the temporal
and spatial variability of the ocean. Anomaly correlation (and associated potential skill) between products
and observations is not used; the necessary selection of background climatologies for this metric is likely to
favor certain products over others.

4. Results

Direct comparison of representative observational data with gridded products permits estimation of prod-
uct reliability with an operating assumption that 3–7 m averaging of in situ observations targets the same
SST/S intended by the gridded data. Figures 3 and 4 illustrate the quality of fit between the included SST
analyses and SST/S models, respectively, and in situ observations. The spatial distributions of these product-
minus-observation residuals are charted geographically in Figures 5 and 6, with residual statistics appearing
in Tables 1 and 2. Negative values in this table may be interpreted as products being cold relative to obser-
vations and the true ocean state. Figure 7 shows comparison of products to CTD and ITP data groups in the
form of Taylor diagrams [Taylor, 2001], which resolve second-order statistics and should be considered in
conjunction with the biases presented in Tables 1 and 2. Use of Taylor diagrams is intended to provide a
convenient visual comparison and rough ordering of products in relation to how well they match the vari-
ability of observations.

4.1. Comparison Against Ship-Based CTD Data Sets
Satellite analysis sea-surface temperatures compare favorably with CTD measurements, and tend to have
small negative SST biases. K10_SST and RSS_SST analyses have the smallest biases and RMSDs relative to
the IPY data set. During the post-IPY period, the smallest magnitude biases of 20:02�C are found for
RSS_SST and MURSST products with the SST of the latter showing slightly more precision. For IPY and post-
IPY data sets respectively, GAMSSA SST has the largest overall biases of 20:27�C and 20:93�C. The GAMSSA
SST cold bias in the AO, previously identified in Dash et al. [2012], is exaggerated against post-IPY CTD due
to poor representation of SST along the coastal Chukchi and Laptev Seas during the warm and low-ice year
2012. All other included satellite-derived SST analyses have biases and errors against CTD measurements
comparable to those found against different in situ measurements in previous studies [e.g., Donlon et al.,
2012; Dash et al., 2012; Høyer et al., 2012; Martin et al., 2012].

Most gridded analyses correlate strongly with CTD observations as visible in the right two-thirds of Table 1
and left columns of Figure 3. With correlations (as squared Pearson coefficients) universally above 80%, SST
analyses track the variability of the IPY CTD set well. Post-IPY CTD correlations are lower in general, with the
GAMSSA product showing a low correlation of 59% due to large errors during 2012. OSTIA and MURSST
products continue matching 83% and 87%, respectively, of the total CTD variance.

The satellite analyses are similar compared to all CTD measurements, but Taylor diagram in the left plot of
Figure 7 reveals a rough ranking of all products considered on the basis of second-order statistics. The
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analyses demonstrate remarkable fit to the variability of CTD SST, with standard errors (as measured by
RMSD) within 6% of the true CTD SST standard deviation. The OISSTv2 analysis, despite having the lowest
magnitude bias of 20:02 �C, has a larger RMSD and consequently lower overall correlation than other analy-
ses. MURSST analysis appears to be the strongest overall analysis that gives full Arctic coverage without
masking sea-ice although OSTIA SST has a higher correlation and lower RMSD in total.

Figure 3. Correlation of SST analyses with respect to (left columns) IPY CTD, (center columns) post-IPY CTD, and (right columns) ITP observations. The descending orders of products are:
MURSST, OISSTv2, OSTIA, and RTG_HR on the left side; and GAMSSA, K10_SST, and RSS_SST on the right. In each plot, the thick light-grey dashed line indicates perfect matching; the
thin dark-grey line shows this ideal relation offset by product bias; and the thin solid lines bound the bias-offset fit at a distance of the product-minus-observation RMSD.

Figure 4. Correlation of SST/S model analyses with respect to (left columns) IPY CTD, (center columns) post-IPY CTD, and (right columns) ITP observations. ECCO2 is shown in the left por-
tion and HYCOM in the right. SST comparison illustrated on the top row and SSS on the bottom. The plotted lines are equivalent to those of Figure 3.
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Figure 5. Analysis-minus-observations SST residuals. Plot layout is the same as in Figure 3. Plotted points represent residuals which are bin-averaged on the AVHRR northern hemisphere
25 km equal-area EASE grid [Brodzik and Knowles, 2002] to improve visibility and do not coincide with locations in Figure 1. The residual values are given by color. Greyish colors indicate
residuals smaller than 60:15�C.

Figure 6. Model-minus-observation SST/S residuals. Plot layout is the same as in Figure 4, and points are plotted in the same manner as those in Figure 5. Greyish colors indicate resid-
uals smaller than 60:15�C for SST and 60.16 PSU for SSS.
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Models show larger biases and error than analyses products, but appear to have statistics comparable with
those of the satellite analyses. HYCOM SST has a 10:03 �C bias against post-IPY CTD-derived SST compared
to the 20:97 �C bias of ECCO2 SST, and the corresponding RMSD for HYCOM, 1.03�C, is less than half that of
ECCO2 as in Table 1. Figure 7 shows that HYCOM SST has a higher correlation, lower RMSD, and closer fit to
the observed SST variability amplitude than ECCO2 for non-ITP data. In these metrics, the HYCOM1NCODA
SST fits CTD SST than the included ECCO2 model does.

The bottom of Table 1 includes model-minus-observation SSS residual statistics in the rows labeled ‘‘SSS’’
below each model name, and Figures 4 and 6 include visualizations of SSS residuals. The ECCO2 and
HYCOM SSSs differ in sign of bias; ECCO2 under-represents post-IPY CTD-derived SSS by an average of
20.58 PSU compared the 1 1.27 PSU bias of HYCOM, and the RMSD of ECCO2 is roughly 10% lower than
that of HYCOM. The difference in bias between these model-derived data consistently exceeds 1 PSU across
all observation groups, but both model SSSs correlate well with the CTD data (Figure 4, right) with increas-
ing error in model values as observed salinity decreases.
4.1.1. Regional Patterns in Residuals
Spatial distributions of product SST errors show similarities; see Figure 5. Product SSTs are overall slightly
cool toward the north Atlantic Ocean with a tendency be warm relative to near-surface CTD toward the
Pacific Ocean. In the central AO, there is less agreement: MURSST and GAMSSA SSTs remain cooler than
observations while OISSTv2 and RTG_HR analyses are typically warmer. Products also share similar regions
where analysis SSTs differ greatly from CTD SST such as the Kara and Beaufort Seas, and the Fram and
Bering Straits. Figure 6 shows the geographic distribution of SST/S residuals for the two models. Regions of
interest in the ECCO2 model are the Greenland and Barents Seas where SST is overestimated in contrast to
all other products considered, and the Pacific sector of the Arctic Ocean where the model notably

Table 1. Product Bias, RMSD, and Correlation for Ship CTD Data Groupsa

Bias RMSD Correlation

IPY p-IPY All CTD IPY p-IPY All CTD IPY p-IPY All CTD

OISSTv2 10.05 20.38 20.02 1.78 1.62 1.77 0.80 0.76 0.80
OSTIA 20.22 20.54 20.26 1.16 1.40 1.20 0.91 0.82 0.90
RTG_HR 20.17 20.35 20.20 1.47 1.76 1.51 0.85 0.73 0.84
MURSST 20.14 20.02 20.12 1.45 1.22 1.42 0.86 0.87 0.86
GAMSSA 20.27 20.93 20.46 1.09 2.12 1.49 0.92 0.59 0.84
K10_SST 20.08 20.13 20.10 0.86 1.54 1.18 0.93 0.76 0.87
RSS_SST 20.07 20.02 20.05 0.97 1.41 1.18 0.90 0.70 0.86
ECCO2 20.56 20.97 20.61 2.09 2.16 2.10 0.77 0.61 0.76

SSS 20.73 20.58 20.71 2.12 2.51 2.17 0.73 0.69 0.74
HYCOM 20.07 10.03 20.03 1.02 1.03 1.03 0.93 0.90 0.93

SSS 10.64 11.27 0.87 1.67 2.79 2.17 0.79 0.72 0.79

aThe top portion of the table shows SST analyses with bias and RMSD units in �C. The bottom portion corresponds to model SST/S
with units of �C and PSU, respectively, for bias and RMSD. The rightmost portion of the table gives product-observation correlations as
squared Pearson coefficients.

Table 2. Product Bias, RMSD, and Correlation for Shallow ITP Dataa

Summer Winter Annual

Bias RMSD q2 Bias RMSD q2 Bias RMSD q2

OISSTv2 10.24 0.51 0.42 20.16 0.23 0.01 20.06 0.38 0.19
OSTIA 10.14 0.49 0.35 20.24 0.14 0.02 20.14 0.32 0.23
RTG_HR 10.48 0.43 0.04 10.45 0.38 0.00 10.46 0.39 0.01
MURSST 20.24 0.23 0.30 20.24 0.11 0.10 20.24 0.15 0.23
GAMSSA 20.29 0.22 0.30 20.25 0.10 0.18 20.25 0.13 0.26
ECCO2 20.02 0.22 0.23 20.04 0.12 0.01 20.04 0.16 0.10
SSS 20.60 2.60 0.04 10.55 2.00 0.04 10.25 2.23 0.03
HYCOM 10.09 0.76 0.31 20.12 0.26 0.01 20.08 0.41 0.19
SSS 11.95 1.35 0.20 12.71 1.55 0.06 12.57 1.54 0.07

aSummer, winter, and total values are given on the left, center, and right thirds of the table, respectively. Bias and RMSD of product-
minus-observation residuals, and correlation presented as squared Pearson coefficient, are given in the respective left, center, and right
columns of each third. Top rows correspond to SST analyses, and the bottom to SST/S models. K10_SST and RSS_SST are under-
sampled and not included. Summer is taken as Julian days 130–260 when ITP SST/S depart from freezing, and winter as the remainder
of the year.

Journal of Geophysical Research: Oceans 10.1002/2015JC011005

STROH ET AL. SST/S PRODUCT COMPARISON IN AO 7230



represents the ocean water as too cold and salty both during and after IPY. For commonly resolved CTD
data, ECCO2 and HYCOM products appear very salty in the Beaufort and Chukchi Seas. Figure 7 shows that
against all CTD data, HYCOM SST has a lower overall RMSD and stronger correlation of 93% than even the
satellite analyses, but the model SSS has a larger (and positive) bias and does not track the variability found
in CTDs as well as ECCO2 does.

For SST/S models, correlations with in situ data are weaker than for SST analyses, and the accuracy of model
SST/S values is not constant throughout the AO. HYCOM SST residuals are more uniform across the AO
shelves with no discernible change in bias between the Eurasian and Amerasian shelves; the spatial distri-
bution of residuals resembles those of the satellite analyses. ECCO2 SST shows a bias of 21:72�C for all CTD
measurements along the the Siberian shelves between E60� and E180� while a 10:25�C bias is present for
CTD measurements in the Norwegian and Barents Seas region.

SSSs in these regions are more accurate in the ECCO2 model, which also lacks the overly salty Norwegian
coastal waters found in HYCOM. The warm, salty surface errors found in the HYCOM representation of the
Kara sea contrasts the cool, fresh bias found in ECCO2 throughout the Siberian Shelf. In the central AO, the
HYCOM product is cool and salty relative to IPY CTD data while ECCO2 is slightly warm and fresh. Similar
patterns are found compared to the longer time series of ITP measurements. Both model data sets appear
cool and strongly salty in the Beaufort Sea region despite large differences in AO-wide SSS biases. MURSST
SST also has biases of 10:35�C and 20:30�C for these regions, respectively. Similar but smaller differences
between errors in these regions are found in GAMSSA and OISSTv2 products. No other large-area differen-
ces in regional biases are detected in residuals relative to CTD data but clusters of large errors in several
smaller data-abundant regions such as the Kara Sea and northern Svalbard coast beg further investigation
not pursued here. In comparison to SSS observations which both models resolve, HYCOM and ECCO2 repre-
sent the Beaufort and Chukchi regions with strong positive salinity biases, but this region is more localized
in ECCO2 whereas the overly saline region extends into Bering Sea and the central AO in HYCOM.

Model SST/S and analysis SST are less accurate in regions of runoff influence, such as in the Kara Sea and
near outflows of the Lena and Mackenzie Rivers. In these areas, both models over-estimate salinity and
many products under-estimate SST. The regional presence of these biases and increased inaccuracy may be
due to the choice of averaging CTD data over 3–7 m; the mean profile over all CTD measurements with
salinity less than 20 PSU in 0–3 m depths has a monotonic decrease in temperature between 3 m and 10 m.
This suggests that calculated SST cold residuals in freshwater regions may be reduced if deeper CTD meas-
urements were averaged to represent observations.

4.2. Comparison Against ITP Near-Surface Data
ITPs move with the ice and their records form a time-series, so associated residuals are correlated in time and
are substantially less independent than the CTD observations. Further, the errors are distributed nonnormally

Figure 7. Comparison of nondimensional second-order statistics via Taylor diagram against all (left) ship CTD observations and (right)
near-surface ITP observations. The relation shown here is independent of bias (first-order difference) and one must consider these in con-
junction with Table 1.
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due to the constraint on water temperature minimum. Checking products against ITP data may not be as
meaningful as it is for CTD data, but this comparison is diagnostic in its own right. Against ITP data in the 3–
7 m range, the SST analyses display more pronounced differences. The K10_SST and RSS_SST analyses sample
only about 1200 and 20, respectively, of the approximately 14,000 ITP profiles due to sea-ice masking in those
products, and neither analysis is further included in this discussion of fit to ITP-derived SST.

RTG_HR SST shows a distinctive strong positive bias of 0.45�C and less than 1% correlation with ITP data,
and this bias is evident against CTD data sets as well in Figure 5. OISSTv2 SST has the lowest bias for ITP
data at 20:05�C, but, along with OSTIA and RTG_HR, over-represents the inherent variance of ITP SST by
more than 2.5 times (Figure 7, right). MURSST and GAMSSA statistics are nearly identical with biases near
20:25�C and RMSDs roughly 0.14�C.

Among the analyses considered, MURSST and OSTIA SST appear equal in providing both strongest correla-
tion and lowest biases to ITP-derived SST for products which include a separate sea-ice analysis. The salin-
ities in the ECCO2 model have smaller RMSD and bias than those in HYCOM for all data sets including ITP,
although they still under-represent the variability of observations. Both models are competitive with satel-
lite analyses in terms bias and RMSD for ITP data. Compared to the ECCO2 product, HYCOM SST has larger
RMSD and a more pronounced over-estimation of ITP temperature variability, although the SSS residual sec-
ond-order statistics are similar for both models. ECCO2 SST exists in a temperature range much smaller than
the data while HYCOM SST is opposite (Figure 4, bottom).

4.3. Improving Fit to ITP Near-Surface Data
Hydrographical data beneath sea-ice for sub surface layers are scarce and none of it is remotely sensed.
Instead, MW satellite bands are able to resolve approximate sea-ice concentration (SIC), and product SST can
be relaxed to a freezing-point or other climatological state as SIC approaches 100%. This parametric approach
is used by many of satellite analyses with a target freezing-point near 21:8�C implicitly assuming salinities
near 35 PSU [Rayner et al., 2003; Donlon et al., 2012]. Roughly 75% of ITP temperature data in the 3–7 m range
used for comparison is within 0.01�C of the freezing-point calculated from the observed salinity.

The difference between ITP temperature and freezing temperature calculated from ITP salinity shows a
change during Julian days 130–260, when the mean of this difference increases in order from 1/1000�C to
1/10�C with a corresponding change in standard deviation from 0.027�C in winter to 0.138�C in summer.
Salinity distribution of ITP measurements is multimodal and shows both seasonal and inter-annual variabili-
ty, reflecting the changes in freshwater distribution and rapid freshening. The upper-most decile of near-
surface averaged ITP salinities never exceed 30.5 PSU for any season in the years 2008–2012.

Different biases of several products are detected in seasonally partitioned residual statistics presented in
the left and center columns of Table 2. No seasonal changes in bias appear to be present in RTG_HR,
MURSST, GAMSSA, or ECCO2 SSTs. However, biases with seasonal variation are apparent for OISSTv2, OSTIA,
and HYCOM residuals against ITP, and differ from the total biases presented in Table 2. These products
show warm biases of 10:24�C, 10:14�C, and 10:09�C, respectively, in summer contrasting cold biases of
20:16�C, 20:24�C, and 20:12�C, respectively, in winter. The winter biases against ITP data are roughly in
the same range as those against the summer-focused CTD data. This suggests that rather than a cold bias
in the winter, products are simply warmly biased in the central AO during the summer, and this bias is
undetected by CTD measurements concentrated near and on continental shelves. Large errors for ITP data
are localized in the Beaufort Gyre where surface freshwater content depend on a complex interaction of ter-
restrial hydrological cycles, atmospheric modes, and sea-ice melt [Timmermans et al., 2011; Morison et al.,
2012]. Inaccuracies in that region may reflect the rapid salinity divergence from previous climatologies in
the Beaufort Gyre and Canada Basin where ITPs provide the most data.

An increased warm bias during summer for certain products may be due to under-relaxation of temperatures
toward freezing when the presence of surface melt-ponds causes SIC under-estimation. Cold bias in winter for
these products is likely the result of prescribed climatological freezing temperatures: freezing-point prescribed
near 21:8�C is significantly cooler than temperatures observed by ITPs. The under-estimation of sea-ice in
summer and over-estimation of background salinity is consistent with the seasonally partitioned correlation
diagrams shown in Figure 8. In the top row of this figure, summer-time measurements cluster near 21:6�C
while analysis SSTs are frequently warmer by 1/2�C. The bottom row illustrates strongly constrained
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temperatures near 21:8�C while the observed near-freezing temperatures are warmer by roughly 1/6�C.
Another possible source of summer warm bias in these products is the under-estimation of wind stress used
in transforming the satellite skin temperatures to product SST, but this is not explored here.

Product SST P may be corrected to better fit in situ ITP data by using product-minus-observation residuals D
P and SIC I. In this discussion, I� is a critical SIC above which ice influences SST. Linear regression of residuals
against SIC greater than I� parametrizes residuals in terms of SIC: DP5a � I1b where a, b are statistically
determined coefficients. The corrected product values P�15P1ða � I1bÞ � fI� � I � 1g target the mean full-
ice SST observed by ITP and have an improved mean linear relation to ITP near-surface temperature.

Corrected SST P�1 have biases smaller than 1022 �C against ITP data, but most ITP data are associated with
SIC greater than 95%. As a result, the residuals of P�1 show little improvement in higher-order statistics and
the values of ða;bÞ fluctuate for random sub-samples of ITP data. However, the full-ice SST corrections c5a
1b are robust and correspond to freezing temperature corrections. Table 3 shows ða; cÞ -values for several
products using critical SIC of 50%. The corrected freezing temperatures P1c are approximately 21:62 �C for
all products presented.

As a result of inadequate variation of SIC among ITP measurements, the method presented above tends to
correct only product bias. The frequency of ITP data with respect to SIC resembles log-normal distribution
so SST correction can be improved using a normalized logarithm of SIC. Transforming SIC into ~I5logð22IÞ=
logð22I�Þ redistributes the dense cluster of ITP data associated with high SIC more appropriately onto the
interval 0 �~I � 1. This decreases the weight of ITP associated with high SIC and yields a better conditioned
least-squares problem for linear regression.

Figure 8. Seasonal comparison of select products to ITP measurements. The (left) OISSTv2, (middle) OSTIA, and (right) HYCOM products are biased (top) positively in summer and (bot-
tom) negatively in winter. Summer-time residual distribution shows a less constrained temperature range compared to observed values. Winter residuals show strongly constrained
product SST targeting 21:8�C while actual measurements are centered near 21:6�C.
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Modified product SST values P�25P1ðd �~I1gÞ � f0 � ~I � 1g fit the ITP data in the mean more uniformly over
the region I � I�. Table 4 shows coefficients ðd; gÞ for several products whose modified SST absolute biases
are less than 5 � 1023 �C. This method produces values of ðd; gÞ which are considerably more robust for ran-
dom sub-samples of ITP data, and may also improve higher-order statistical correspondence between prod-
uct and ITP values. For example, applying independently the summer and winter corrections reduces the
RMSD of OISSTv2 and OSTIA residuals by roughly 16% and 14.5%, respectively, and results in corrected SST
P�2 with biases smaller than those of P�1.

5. Summary

We extracted near-surface AO temperature and salinity profiles from ship-based CTD rosette casts, xCTD,
and ITP data sources during the years 2006–2013. Each profile containing valid T/S in the range 3–7 m was
reduced to the mean over that range to represent observed foundational SST and SSS. These in situ SST/S
observations were compared to corresponding values in OISSTv2, OSTIA, MURSST, RTG_HR, K10_SST, and
RSS_SST gridded satellite analyses, as well as particular NASA/JPL ECCO2 Cube92 and HYCOM1NCODA
data-assimilated model outputs. Against CTD temperature measurements, the satellite products had similar
error statistics; correlation ranged between approximately 80% (OISSTv2) and 90% (OSTIA) with relative
errors in variability ranging from 26% (GAMSSA and RTG_HR) to 1 1% (OISSTv2). All analyses showed over-
all cold biases against averaged ship-CTD profiles, and bias magnitudes were less than 0:5 �C. The warm
post-IPY year 2012 generated large errors for many products; exclusion of 2012 CTD profiles reduces bias
magnitude to less than 0:3 �C for all products.

Bias statistics against CTD SST data for models were generally worse than those for conditioned satellite
products, but models estimate SSS as well as other key quantities (e.g., heat fluxes) not considered. The
reader is reminded that satellite MW salinity measurement is a more recent technological advancement
[Lagerloef and Font, 2010], and is not listed in either model documentation as a data source. The HYCOM
product SST showed smaller bias (20:04 �C) and higher correlation (93%) with ship-based CTD data than
any of the satellite analyses but showed a large salinity bias of 1 1.23 PSU. ECCO2 product SST/S biases
were 20:61�C and 20.42 PSU, respectively, for all ship-based CTD data. ECCO2 matched the variance of the
observations with 1 9% relative temperature error and 217% salinity error while corresponding values for
HYCOM were 21% and 243%, respectively. Both models showed overall negative temperature biases simi-
lar to satellite analyses. Larger errors in T/S were detected in regions of direct freshwater and sea-ice

Table 3. Least-Squares Slope (a) and Temperature Correction at 100% SIC (c) for Linear Correction to Various Products for SIC Above
50%a

Summer Winter Annual

a (�C) c (�C) a (�C/%) c (�C) a (�C/%) c (�C)

OISSTv2 1.61 20.15 0.71 0.20 1.11 0.11
OSTIA 0.29 20.12 0.16 0.24 0.29 0.15
MURSST 0.11 0.24 0.15 0.25 0.14 0.24
ECCO2 0.12 0.03 0.16 0.05 0.15 0.04
HYCOM 21.26 0.12 0.26 0.10 0.26 0.10

aOriginal product values, P, better reflect ITP observations by computing P�15P1c1a � ðI21Þ for I > I�50:5.

Table 4. Least-Squares Slope (d) and Intercept (g) for Residuals Regressed Over SIC Transformed by ~I5logð22IÞ=logð3=2Þ Correspond-
ing to a Critical SIC Value of 50%a

Summer Winter Annual

d (�C) g (�C) d (�C) g (�C) d (�C) g (�C)

OISSTv2 20.76 20.14 20.34 10.20 20.52 10.12
OSTIA 20.13 20.12 20.08 10.24 20.14 10.15
MURSST 20.05 10.24 20.07 10.25 20.07 10.25
ECCO2 20.06 10.03 20.08 10.05 20.07 10.05
HYCOM 10.54 10.12 20.13 10.10 20.13 10.11

aOriginal product values, P, better reflect ITP observations by computing P�25P1ðd �~I1gÞ for I > I�50:5.
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influence. Generally, ECCO2 Cube92 appears to have a cold and fresh bias in the AO and adjunct shelves
while HYCOM1NCODA output is cold and salty in those regions.

Near-surface ITP data reflect year-round T/S below multiyear sea-ice typically found over deep ocean basins
in the Central Arctic. Away from the more often surveyed coastal shelves, products showed much lower cor-
relation with ITP temperature measurements despite having small magnitude biases; the strongest nonsea-
sonal correlation (26%) was found for GAMSSA, a product with negative bias of 20:25 �C. Product RMSDs
were correspondingly very small due to the narrow range temperature found in ITP-derived data. Consider-
ing ITP data during Julian summer days 130–260 separately from winter days, seasonal changes in tempera-
ture bias appear in all products except MURSST and ECCO2, with summer temperature biases higher than
those found during winter. In OISSTv2, OSTIA, and HYCOM SSTs, these biases are positive in summer and
negative in winter. In summer, this is likely a consequence of SIC under-estimation due to melt ponds.

A likely diagnosis for winter-time cold bias is over-estimation of surface salinities in background climatolo-
gies. Many products appear to use freezing-point temperatures lower than observed ITP temperatures; dur-
ing each year of 2009–2012, less than 10% of ITP near-surface salinities in the Canada Basin and Beaufort
Sea are above 30.5 PSU while products target freezing temperatures closer to 34 or 35 PSU.

Linear correction of SST on the basis of SIC and the product-minus-ITP temperature allows for reducing
product bias, but has difficulty improving second-order statistics due to the relatively low variability in SIC
associated with ITP near-surface samples. A suggested linear correction of product SST against logarithmi-
cally transformed SIC may be used to de-bias products as well as reduce RMSD in this case.

Ship-collected CTD profiles and near-surface ITP data as collected are not intended to represent sea surface
quantities. ITPs sample waters below sea-ice where the satellite observations are not present. Satellite-
derived products and models which rely heavily on satellite SST present SST/S quantities where there are
no remotely sensed data, necessitating the use of available in situ data for validation and quality diagnosis.
Improvements to product quality may be made, not only through direct use of these in situ data sources for
analysis and state estimation, but additionally by the incorporation of these data to update background
fields and to improve the representativeness of remotely sensible proxy data such as SIC.
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